Skip to Content

Scientific Associate of


ICO Awards

Affiliated Commission of

Welcome to the International Commission for Optics (ICO)

ICO Territories

Territories of ICO - August 2008

ICO News

    • Congratulations from the ICO President to the 2014 Nobel Prize Winners in Physics and Chemistry


      The 2014 Nobel Prizes in both Physics and Chemistry have been awarded to distinguished scientists who have made seminal contributions in the field of optics and photonics.

      As the President of ICO, I express my congratulations to Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura for being the 2014 Nobel Prize awardees in Physics, “for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources”. Their development of III-Nitride semiconductor-based blue-light LEDs has led to great innovation in lighting technologies, leading to timely benefits for mankind through global energy saving. Their long-term effort of semiconductor material development and investigation of device physics really deserves great praise.

      I am also pleased to congratulate Eric Betzig, Stefan W. Hell, and William E. Moerner, recipients of the 2014 Nobel Prize in Chemistry, "for the development of super-resolved fluorescence microscopy". Their ground-breaking work has brought optical microscopy into the nano-scale dimension, well beyond the long-acknowledged resolution limit determined by half the wavelength of light. Stefan Hell developed stimulated emission depletion (STED) microscopy, which yields an image with a resolution well beyond Abbe’s stipulated limit. Eric Betzig and William E. Moerner, working separately, laid the foundation for a different “super-resolution” method, single-molecule microscopy. The ICO is pleased and honored to note that Stefan Hell was selected by the ICO as the recipient of the prestigious ICO Prize in 2000.

      As is now well known among the international optics community, the United Nations General Assembly in its 68th Session proclaimed 2015 the International Year of Light and Light-based Technologies (IYL 2015). There is no doubt that the awarding of the 2014 Nobel Prizes in Physics and Chemistry for accomplishments in the field of optics and photonics will not only draw more attention to the IYL2015 but also raise global awareness of how very important light-based technologies are in promoting sustainable development, of how they play a vital role in our daily lives, and of why optics is such an important cross-cutting discipline of science in the 21st century.

      I express my hope that all six awardees will continue to contribute to the progress of optics and photonics and to inspire young researchers and students to meet challenges in innovative science and technology.

      Yasuhiko Arakawa

    • ICO Newsletter - Latest Issue (PDF  1.4MB)

    • Blue LEDs: Nobel Prize in Physics 2014

      photo photo photo
      Isamu Akasaki Hiroshi Amano Shuji Nakamura

      The ICO congratulates Isamu Akasaki, from Meijo University, Nagoya, Japan and Nagoya University, Japan, Hiroshi Amano, Nagoya University, Japan; and Shuji Nakamura, Professor of materials and of electrical and computer engineering, Solid State Lighting & Energy Electronics Center of the University of California, Santa Barbara, CA, USA, on being awarded the 2014 Nobel Prize in Physics “for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources”. Three decades of efforts to produce bright blue light sources culminated in the early 1990s. Success in achieving high-efficiency required a breakthrough in high-quality crystal growth; basic materials science for the production of GaN-based alloys with different compositions; device physics for advance heterostructure design for their integration into multilayered structures such as heterojunctions and quantum wells; and optical physics for the optimization of light out-cupling. Asaki, Amano and co-workers developed structures based on AlGaN/GaN, while Nakamura and co-workers explored InGaN/GaN and InGaN/AlGaN for producing heterojunctions, quantum wells and multiple quantum wells. Both groups observed blue laser emission based on GaN in 1995-1996.

      Blue LEDs were meanwhile the lacking core of nowadays high-efficient white electroluminescent light sources, which have triggered a revolution in the lighting technology by replacing the incandescent bulbs of the last century with white LED lamps. They contribute to large energy savings and due to their low power requirements might be powered by locally generated solar power and provide illumination to over 1.5 billion underserved population around the world who lack access to electricity grids. UV-emitting AlGaN/GaN LEDs are also used for water purification, as UV light destroys the DNA of bacteria, viruses and microorganisms. They also constitute an essential part of all of our display and recording technologies: GaN-based LEDs are used for back-illuminated liquid crystal displays in cell phones, tablets, computers, TV screens, etc., and Blue and UV-emitting GaN diode lasers are used in DVD and blue-ray technologies.

    • Super-resolved fluorescence Microscopy: Nobel Prize in Chemistry 2014

      photo photo photo
      Eric Betzig Stefan Hell William E. Moerner

      It is with great pleasure that the ICO congratulates the 2014 Nobel Laureates in Chemistry, Eric Betzig, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Stefan W. Hell, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, German Cancer Research Center, Heidelberg, Germany; and William E. Moerner, Department of Chemistry, Stanford University, Stanford, CA, USA, who were awarded "for the development of super-resolved fluorescence microscopy". Prof. Stefan W. Hell, director of the Department of Nano Biophotonics of the Max-Planck-Institute for Biophysical Chemistry in Göttingen Germany was awarded the 2000 ICO Prize in recognition of his innovative work on increasing resolution in far field optical microscopy. Stefan Hell introduced the concept of Stimulated-Emission-Depletion Microscopy (STED) the basic idea of which is to reduce the extent of the focal spot by 'switching off' fluorescence from its rim. He predicted that STED microscopy should break the diffraction barrier in far-field fluorescence microscopy by about five-fold, which he and his collaborators demonstrated experimentally a few years later. They also achieved 3D-imaging of actin filaments and microtubules in fibroblast cells with 4Pi-confocal microscopy, with a 4-fold sharper sectioning than that of high-end confocal microscopy. In addition to the 4Pi and STED techniques, they introduced a multifocal version of multiphoton microscopy, which delivers real-time, direct-view images from the interior of live cells without trading off resolution against speed. With STED, 4Pi, and other techniques inspired by his work, the famous Abbe's resolution limit was overcome and the resolving power of far-field light microscopy was pushed to the tens of nanometer scale.

      William E. Moerner is the Harry S. Mosher Professor of Chemistry at Stanford University. In 1989, as a research scientist with the IBM Corporation, Moerner developed a laser-based technique that for the first time allowed the visualization of single fluorescent molecules. Later, while a professor of chemistry at the University of California, San Diego, he realized that there were ways of controlling the fluorescence of certain proteins, ways that later were employed by Hell and Benzig for super-resolution microscope imaging.

      Controllable fluorescence was exploited by Eric Betzig’s in his co-invention of photo-activated localization microscopy, or PALM. PALM achieves resolution well beyond the Abbe limit through sub-wavelength position measurements on fluorescing molecules. Betzig, now a member of the research faculty at the Howard Hughes Medical Institute’s Janelia Farm campus in Ashburn, Virginia, built the first PALM imaging system in the living room of his co-inventor Harald Hess.

      Far-field fluorescence microscopy is highly relevant to biological sciences because, in contrast to electron, atomic force and near-field optical microscopy, it allows imaging of the interior of living specimens at the submicron scale. Not surprisingly, 3D versions of super-resolving far-field light microscopy, such as provided by confocal and multiphoton fluorescence microscopes, play a key role in uncovering the secrets of life at the sub-cellular level, revealing relationships between structure and function.

    • 2014 IUPAP Young Scientist Prize in Optics awarded to Albert Schliesser, Niels Bohr Institute, Denmark


      Albert Schliesser is a Research Assistant Professor at the QUANTOP Center of the Niels Bohr Institute, Copenhagen University, Denmark. He obtained his M. Sc (Physik-Diplom) from the Technische Universität München, and his Ph. D. (Dr. rer. nat.) in Physics from the Ludwigs-Maximilians-Universität München. His Ph. D. advisor was T. W. Hänsch. After a Postdoctoral position as Research Assistant for the Laboratory of Photonics and Quantum Measurement of the Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland, he joined the Niels Bohr Institute at Copenhagen University, Denmark. He has been awarded the 2014 IUPAP Young Scientist Prize in Optics “for his outstanding contributions to photonics and optomechanics, in particular by developing a micro-frequency comb and a radio-to-optical mechanical transducer."

      Read more

    • ICO Green Book "Towards ICO-23" (PDF 7.97 MB)

    • 2015 is the International Year of Light:

      ICO invites its territorial committees to promote the creation of national committees for the programming of local and regional celebration activities.

      Read more


      Other related articles in the ICO Newsletter:

      January 2013

      "An International Year of Light for 2015: UNESCO’s Executive Board supports the initiative", John Dudley, Université de Franche-Comté, France Read more

      April 2013

      "10th anniversary of TSOSA and Year of Light planning at ICTP: The TSOSA Advisory Group has served the Trieste System for a decade and is now contributing to the First International Planning Meeting of the International Year of Light 2015". Read more

    • @ICOPNews

Please use Google Chrome

Full Screen